I B.Tech - I Semester - Regular / Supplementary Examinations FEBRUARY - 2023

CALCULUS AND LINEAR ALGEBRA
 (Common for ALL BRANCHES)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	By reducing it to Normal form find the rank of the following matrix. $\left\lceil\left.\begin{array}{cccc} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 12 \end{array} \right\rvert\,\right.$	L3	CO 2	7 M
	b)	Investigate for what values of a, b the equations $\begin{aligned} & x+y+z=6, x+2 y+3 z=10 \\ & x+2 y+a z=b \text { have } \end{aligned}$ (i) no solution (ii) a unique solution (iii) many solutions.	L4	CO4	7 M
		OR			

2	a)	By reducing it to Echelon form find the rank of the following matrix. $\left[\begin{array}{cccc} 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \\ 11 & 12 & 13 & 14 \\ 16 & 17 & 18 & 19 \end{array}\right]$	L3	CO 2	7 M
	b)	Solve the system of equations $\begin{aligned} x+y+2 z= & 4,2 x-y+3 z=9 \\ & 3 x-y-z=2 \end{aligned}$	L3	CO 4	7 M

UNIT-II

3	Verify Cayley -Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$. Calculate theorem. A^{4} and A^{-1} using Cayley-Hamilton		14 M	

OR					
4	a)	How would you find eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}3 & 2 & 2 \\ 1 & 2 & 2 \\ -1 & -1 & 0\end{array}\right]$	L4	CO 4	7 M
	b)	Calculate $\begin{aligned} & A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I \\ & \text { where } A=\left[\begin{array}{ll} 1 & 4 \\ 2 & 3 \end{array}\right] \end{aligned}$	L3	CO 2	7 M
UNIT-III					
5	a)	How would you confirm Rolle's theorem for $f(x)=e^{x}(\sin x-\cos x)$ in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$	L3	CO5	7 M

	b)	Discover 'c' of Cauchy's mean value theorem for $f(x)=e^{x}, \quad g(x)=e^{-x}$ in $[a, b], \quad 0<a<b$	L3	CO5	7 M
OR					
6	a)	Prove that $\frac{\pi}{6}+\frac{1}{5 \sqrt{3}}<\sin ^{-1}(3 / 5)<\frac{\pi}{6}+\frac{1}{8}$	L3	CO6	10 M
	b)	Obtain the Maclaurin's series expansion of $\sin x$.	L3	CO6	4 M
UNIT-IV					
7	a)	If $u=\frac{y z}{x}, v=\frac{z x}{y}, w=\frac{x y}{z}$ then calculate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$	L3	CO3	7 M
	b)	Discover the extreme values of the function $x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$	L3	CO5	7 M
OR					
8 Calculate the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$			L3	CO3	14 M
UNIT-V					
9	a)	Appraise $\int_{0}^{\frac{\pi}{4}} \int_{0}^{a \sin \theta} \frac{r d r d \theta}{\sqrt{a^{2}-r^{2}}}$	L4	CO5	7 M
	b)	Change the order of integration and evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$	L4	CO3	7 M
OR					

10	a)	Solve $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z)$ dydxdz.	L3	CO5	7 M
	b)	By concluding the limits of integration find the area bounded by the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$	L4	CO3	7 M

